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We have simulated the two-dimensional growth of fractal aggregates produced in electrodeposition experi-
ments with axial symmetry in the presence of electric and magnetic fields. A modified diffusion-limited
aggregation algorithm based on the Monte Carlo method is used in order to simulate cluster growth under the
action of Coulomb and Lorentz forces, taking into account the thermal energy. The ion-particle movement has
each step biased by the resultant force; in the algorithm, it is mediated by the Boltzmann term. The electric
voltage between the electrodes tends to compact the aggregates and reduce the effect of screening. The Lorentz
force provides a spiral form for aggregates which twists according to the magnetic field direction and intensity.
A function was defined to measure the chirality of the system. The fractal dimension was also calculated to
measure the influence of the electric and magnetic fields as well as the temperature during the growth process.
Good agreement with experimental results was observed.
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I. INTRODUCTION

Patterns in nature have attracted the attention of mathema-
ticians and physicists for a long time. Questions related to
the growth of objects, like galaxies, bacteria colonies, or
atom aggregates, are very intriguing and are in the realm of
the modern physical activity.

In the beginning of the 1980s Witten and Sander proposed
an algorithm to simulate the growth of fractal structures �1�.
The model is based on interface growth through the irrevers-
ible aggregation of particles; such a process is limited by the
particle diffusion. In light of the diffusion-limited aggrega-
tion �DLA� model a large number of fractal structures are
well reproduced, even for structures of different natures
�2,3�.

Various examples of DLA-like aggregate growth occur in
nature such as viscous fingering �4�, bacteria colonies �5�,
and dielectric breakdown �6�. Under certain conditions the
electrodeposition technique produces aggregates very similar
to ones obtained through the DLA model �7–9�. Other forms
such as dendritic, dense radial, and needle-like, among oth-
ers, were also obtained by electrodeposition. Furthermore,
these forms are dependent on the ion concentration and volt-
age between the electrodes. Beyond such usual electrodepo-
sition parameters, external agents like pressure, temperature,
humidity, and electromagnetic fields have been used to
change the aggregate morphology �10–14�.

This changing in morphology is particularly interesting
when a magnetic field is applied. For a field applied perpen-
dicular to the electrodeposition cell the fractal-like form of
the aggregate becomes spiral �12,13�. A less intuitive picture
was recently reported by Bodea et al. �14�, who performed
electrodeposition experiments with magnetic ions. For a
magnetic field applied in the cell plane they observed a mor-
phological symmetry breaking and the aggregate takes a
rectangular shape.

In this paper we have developed a model based on the
DLA algorithm in order to simulate in electrodeposition ex-
periments the growth of structures with axial symmetry un-
der a magnetic field perpendicular to the growth plane. We
have introduced to the DLA algorithm a bias in the ion
movement which is powered by the potential energy �or
force� on the ion position. Thus, the electric and Lorentz
forces are taken into account on the ion movement and the
method can, at least in principle, be used considering any
other forces. The dependence of the aggregate form on the
electrical potential �V� between the electrodes or the mag-
netic field �B� is obtained. Two quantities are used to mea-
sure the change in the morphology: the fractal dimension and
chirality. The theoretical results were compared with experi-
mental ones.

II. MODEL

The original DLA algorithm proposed by Witten and
Sander starts with a first particle �seed� placed in the origin
of a lattice. A second particle located at some distance away
moves in a random walk until it arrives at a site adjacent to
the seed. The next particles are added at a random position
away from the seed and move in a random walk until they
encounter the cluster and aggregate and stick on its interface
�1�. This process is repeated for N particles resulting in the
aggregate. The particle movement is random; i.e., from a
given position the particle has equal probabilities to go in up,
down, left, and right directions. Further details of and many
references to the DLA algorithm can be found in Ref. �3�.

The major point in our work is how to take into account
the forces acting on the ion movement to simulate aggregate
growth in electrodeposition experiments. For the particle-
cluster aggregation problem, which is in some sense similar
to the electrodeposition, a model based on the Metropolis
algorithm was proposed �15–17�. In these works a random
point nearby the particle is chosen and the step to this new
position is proportional to e−K�u, where K is proportional to
the inverse of temperature and �u is the variation of energy
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between the new and present positions. The net effect is to
drive the particle movement towards the resultant force.

Mizuseki et al. �18� and recently Coey and collaborators
�19,20� have reported interesting data on the growth of frac-
tal aggregates by electrodeposition considering the effects of
voltage, ion concentration, electrode shape, and magnetic
field for circular and parallel electrode geometries. One of
the most interesting results is the phase diagram as a function
of ion concentration and electrode voltage, which exhibits
nice and different possible aggregate forms �see Fig. 2 of
Ref. �19��. The authors modeled the growth of aggregates by
the use of the Laplacian equation, introducing further terms
corresponding to the electric and magnetic fields �20�. Ac-
cording to their model, during the growth process an incom-
ing particle feels the electric force only from the nearest
particle in the aggregate. In our approach one takes into ac-
count the entire aggregate structure, and the manners of
choosing the particle movement and, mainly, the magnetic
field dependence are quite different and alternative from the
model used in Refs. �18–20�.

Our approach is based on the DLA algorithm, and we
included the forces submitted to the particle, simulating what
happens in electrodeposition experiments. In principle, the
method can be applied to any other problem where a particle
movement is biased by a force. Initially, a particle �seed of
the aggregate� is placed at the origin of a square lattice.
Another particle is launched some distance away, and it dif-
fuses until it finds the cluster and finally it sticks to it. This
procedure is repeated for all other subsequent particles. We
consider that when the incoming particle sticks to the aggre-
gate it changes its charge signal to the same charge of the
aggregate and the particle remains in its position for all
growth processes, as happens in real electrodeposition ex-
periments. Furthermore, we assume that there is no charge
redistribution during the growth. Such a conjecture can be
considered true since good accordance between simulations
and experiments is observed �see Sec. III A�, even for metal-
lic aggregates. For all the aggregates shown herein we
stopped the growth for 105 particles. This size is limited by
the time, computation which is enlarged by the long-range
character of the Coulomb interaction, and as we shall see
below, all particles in the aggregate are considered on a Cou-
lomb interaction.

The potential or force is introduced in the choice of the
direction of the particle movement. For each step, instead of
having equal probabilities for the four possible choices, the
particle follows a given direction according to the probability
e−K�u �see Fig. 1�. K is equal to 1/kBT, and �u is the varia-
tion of energy between the next and present positions. The
�u includes the Coulomb potential energy and Lorentz term.
In the model kB is stated as being 1.

We first introduce the Coulomb term. The electric poten-
tial energy between the incoming particle �q� and a particle

�qi� of the aggregate is given by Ui=−q� qi

ri
�. Summed over all

qi particles of the aggregate the total electric potential be-
comes U=−q�i=1

N qi

ri
, where N is the total number of particles

in the aggregate. Since all qi are equal to q, U is then
−qq� 1

ri
. The summation � 1

ri
depends on the incoming par-

ticle coordinate �x ,y� and on the aggregate form. If the in-

coming particle is too far from the aggregate, one can ap-
proximate ri as d, d being the mean distance between the
particle and aggregate. Therefore � 1

ri
=� 1

d =N /d. Thus U=
−q Nq

d =−q Q
d . Q is the total charge of the aggregate. However,

in the most interesting situations the incoming particle is
close to the aggregate. The summation � 1

ri
is then equal to a

number—say, n or n�x ,y�. Thus, U=−qqn�x ,y�. Rewriting
this expression and inserting the total charge Q, one has U

=−qQn��x ,y�, where n��x ,y� is equal to
n�x,y�

N or 1
N � 1

ri
.

The dependence on the voltage between the two elec-
trodes can be inserted taking Q=CV, where C is the capaci-
tance between the electrodes. In the model the two electrodes
are considered too far away from each other, meaning that
the electric field between the electrodes is well known. Non-
trivial electric field structure, however, as will be discussed
later �see Fig. 4�, is observed only for distances close to the
aggregate; going away, the field becomes radial �see the up-
per corner on the right of Fig. 4�. Therefore C can be con-
sidered constant and independent of the aggregate size or
form. Thus, the electric potential energy is given by
U=−qCVn��x ,y�, with n��x ,y�= � 1

N ��i=1
N � 1

ri
�.

The Lorentz term can be introduced using the form of the
force between a charged particle and a magnetic field
Bz applied perpendicular to plane of the movement of that
particle: Fl=−qvBz. The correspondent energy is thus
� �ul

�r
�
i=−Fli, hence �ulx=−vyBz�x and �uly =−vxBz�y.

Another point we have to consider, also related to the
Lorentz force, is the particle trajectory. Since the Lorentz
force changes the direction of the movement, in a square
lattice the particle tends to be restricted to move in square
loops. Depending on the field intensity, mainly for high
fields, the particles stay confined in small squares and do not
move towards the aggregate. To avoid this behavior one av-
erages the velocity over the last 10 steps. This averaging
provides to the particle walk a trend of circular movement.
The number of steps used in the average does not produce
any effect on the form of the aggregate, at least between 5
and 20 steps.

In order to calculate the energy variation �u used in the
probability, one adds the Coulomb and Lorentz terms, and
the energy variation in the x direction becomes, then,
�ux=−vyBz�x+qCV�n��x+� ,y�−n��x ,y��. If the choice
direction is in y, the energy variation is given by �uy
=−vxBz�y +qCV�n��x ,y+��−n��x ,y��.

FIG. 1. Sketch of a step of the particle movement. See text for
details.
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In the original DLA model the particle chooses, in each
step, a nearest neighbor between up, down, left, and right
directions on its walking. In our model the particle can move
to points distant from � units �see Fig. 1�. We have consid-
ered � as being variable—i.e., different for each step. We
considered � as a random number or following a decreasing
exponential distribution, but yet no change in the aggregate
form was observed. For all data reported here we used an
exponential distribution with mean value of � equal to 2
without loss of generality.

The next step of the algorithm is a comparison between
the probabilities relative to up, down, left, and right move-
ments. It is performed by the Monte Carlo method with the
use of a simple sampling. The probabilities pi �i corresponds
to one of the four possibilities and directions� are calculated
and sorted in ascending order. A random number r between 0
and 1 is generated; if r is between pi and pi+1, the site i+1 is
chosen. Notice that this procedure is different from the use of
Metropolis �17�. Using Metropolis a random site i is chosen,
and if �ui�0, the movement is accepted and performed. If
�ui�0, the movement is accepted according to the probabil-
ity e−K�u. A problem arises whether more than one or all �ui
are negative. In this case the movement is equally accepted
to any site i where �ui is negative, almost as a random walk,
whereas according to our method the site iwith the lowest
energy is favored.

For relatively high values of V and B and therefore for
�ui, the exponential pi=e−K�ui attains too large or small val-
ues which can cause divergence or annul pi, impeding a com-
parison between the probabilities. For this reason, in those
cases one uses a normalization of the exponent of pi by the
energy of the central site i and pi becomes e−K�ui/�uM−um� �uM

and um are the maximum and minimum values between up,
down, left and right sites�. Such a procedure does not pro-
duce any significative change in the form of aggregates be-
cause it maintains proportion between the energies.

The only parameters of the model are V, B, and K, their
units are volt, tesla, and J−1 �inverse of joule�. The values

used in the simulations do not correspond to the real values
used in experiments. Only the relative intensities of V and B
are relevant to the problem, which is focused on their influ-
ence on the form of the aggregates.

III. RESULTS AND DISCUSSION

A. Electric field dependence

Figure 2 exhibits the effect of growth under different volt-
ages between the electrodes. Figure 2�a� shows the aggregate
formed for the DLA growth; i.e., the particles are not sub-
mitted to any force in its random walk, except by the scat-
tering by the medium. Applying a voltage the aggregate
tends to be compact, the biasing produced by the Coulomb
force provides a trajectory less random and more directed to
the center �see Figs. 2�b�–2�d��. It is worth noticing that the
effect of screening that occurs on the small branches closest
to the center is attenuated by the electrical potential.

To investigate the evolution of how compact the aggre-
gates become with the application of an electric voltage we
have calculated the fractal dimension. We used the counting
box method.

For the DLA cluster the fractal dimension found is
Df =1.70±0.01 �see Fig. 2�a��, in accordance with values re-
ported in the literature �see, for instance, Ref. �3��. As exhib-
ited in Fig. 3, increasing the voltage the fractal dimension
increases and saturates around Df =1.82. In electrodeposition
experiments performed by Matsushita et al. with Zn+ ions an
equivalent behavior was observed, and even the saturation
value found in simulations agrees with the value observed in
experiments �7�. However, for the experiment the fractal di-
mension increases only above a threshold value Vc�8 V.
Probably, there exists a minimum value for the electrical
force intensity needed to overcome the random potential sub-
mitted to the Zn+ ions on its diffuse movement.

An important detail in our algorithm is how the Coulomb
interaction is taken into account in the model. We have con-
sidered the electric field from all particles of the cluster on
the particle that moves towards some part of the cluster, in-

FIG. 2. Formed aggregates varying the electrical tension be-
tween the electrodes.

FIG. 3. Fractal dimension as a function of the electric potential
between the electrodes. The line is a guide to the eyes.
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stead of considering only the central potential from the seed.
The seed in the simulation corresponds to the central elec-
trode in the electrodeposition experiment. Thus, when each
particle sticks to the cluster it adds a tiny quantity to the total
potential. Therefore, the trajectory of a given particle de-
pends on the aggregate form; i.e., it depends on the past
history of the particles already added to the aggregate. The
long-range character of the Coulomb force should introduce
a nonlocal effect on the growth process. Figure 4 shows a
detail of the electric field map produced by the cluster shown
in Fig. 2�b�. This procedure changes the form of the equipo-
tential surfaces from a circular or radial form to a more re-
alistic one.

B. Magnetic field dependence

Figure 5 shows two aggregates grown in the presence of a
magnetic field applied perpendicular to the plane in upward
and downward directions. Beyond the bias towards the ag-
gregate produced by the Coulomb force, the Lorentz force
induces in the particle movement a bias in a circular direc-
tion providing to the aggregate a spiral form. The ensemble
of particles behaves like a magnetofluid following a spiral
movement. As is expected, changing the magnetic field di-
rection, the aggregate spirals in opposite directions. The ag-
gregates were grown under V=0.01 V, K=0.01 J−1, and
B= ±10−4 T; without a field, they should correspond to the
one of Fig. 2�b�. Notice that the aggregates become more
compact in accordance with the experiments performed by
Mogi et al.; see, for instance, Fig. 2 of Ref. �13�.

One interesting aspect related to the aggregate form is
how to quantify the degree of twist produced by the mag-
netic field. To attack this question let us appeal to concepts
related to the chirality of an object. An object is chiral if it is
not coincident with its mirror image. The knowledge of
whether an object is chiral or achiral can be useful, for in-
stance, to determine the selection rules in optical activity,
and important molecules responsible for the lifelike the DNA
are chiral and appear only in one enantiomer. The chirality is
a quantity that is expressed only by two values: an object is
chiral or achiral. However, Le Guennec has recently shown

that in two dimensions chirality can be expressed by a con-
tinuous function �21�; i.e., chirality can assume continuous
values between achiral and chiral forms. Inspired by the
measure of chirality and by the work of Potts et al. �22�, we
propose an expression to quantify how spiraled the aggregate
is. Such expression is given by

� =
1

N2�
j

�
k

r̂1j � r̂ jk

�rjk�
, �1�

where j and k are the particle index and N is the number of
particles in the aggregate. The first summation starts from the
central particle spaning over j particles, and the second takes
k-particle neighbors to a certain j particle. Actually, the sec-
ond summation is restricted to a certain distance from j.

Taking only three particles, � is zero if they are aligned
and is maximum if they form a right triangle. For a cluster,
due to the cross product, � is zero if k particles are uniformly
distributed around a certain j particle and attains maximum
values if the k particles are preferentially distributed in a
direction perpendicularly oriented to r̂1j. Hence, the spiral
form of the aggregate is naturally quantified. A last point to
consider is related to the range of the summation. Taking an
arbitrary point in the aggregate, around it other particles are
aligned in the twisted form and it tends to disappear for
larger distances mainly for particles located in the opposite
side of the cluster. Therefore, in order to take into account
the local symmetry one takes in the summation only over k

FIG. 4. �Color online� Electric field map in a region close to the
cluster. It was calculated to the upper and right sides of the cluster
shown in Fig. 2�b�.

FIG. 5. Aggregates grown with a magnetic field applied perpen-
dicular to the growth plane in �a� upward and �b� downward direc-
tions. B is ±10−4; V=0.01 V and K=0.01 J−1.
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particles in the range between 40 and 100 distance units. The
dependence on 1/ �rjk� is used to attenuate the effect of the
cutoff range.

Using Eq. �1� we calculated the function � for the aggre-
gates shown in Figs. 5 and 2�b�, which correspond to aggre-
gates grown under opposite fields and without a field, respec-
tively. For them, we found � equal to 1.44�10−6 �Fig. 5�a��,
−1.71�10−6 �Fig. 5�b��, and 1.61�10−7 �Fig. 2�b��. To ob-
tain these values we used a cutoff range of 40 units; for other
values up to 100, it is almost the same. The values found are
approximately symmetric for opposite fields and 10 times
smaller when the aggregate is grown without a field. The fact
that � does not vanish for a growth without a field is related
to the intrinsic nature of �, which measures the chirality, and
since the aggregate of Fig. 2�b� is achiral, � is not null.
Actually, structures with spiral form are yet more achiral
with larger � values.

C. Temperature dependence

Another interesting aspect of the aggregate growth is the
lost of symmetry that occurs with the temperature changing.
Figures 5�a�, 6�a�, and 6�b� exhibit a sequence of aggregates
grown under a magnetic field at increasing temperatures
K=1, 0.3, and 0.1 J−1 �K=1/kBT�, respectively.

Comparing the structures grown at K=1 and 0.3 J−1 one
observes that the clusters are less compact and the spiral
form is lost at K=0.1 J−1, transforming the cluster in a DLA-
like structure. The continuous variation from spiral to DLA

structure can be better analyzed from fractal dimension and
chirality calculations.

Starting from K=1 J−1 and decreasing K—i.e., increasing
the temperature—the fractal dimension decreases and tends
to the fractal dimension of the DLA structure �see Fig. 7�.
K=0 corresponds to the limit of infinite temperature; there is
no bias direction in the particle movement. Such a variation
of the fractal dimension is the changing in the compactness
of the aggregate structure. The error bars come from the
counting box method calculation.

For the chirality this continuous variation is also ob-
served, it illustrating the loss of spiral structure �see Fig. 8�.
It illustrates that the limit of large temperatures even with
applied field tends to the DLA structure, as should be ex-
pected due to the disorder induced by the temperature. The

FIG. 6. Aggregates grown under a magnetic field �B
= ±10−4 T� at two different temperatures: K=0.3 J−1 and �a� and
K=0.1 J−1 �b�. V=0.01 V.

FIG. 7. Fractal dimension calculated for different temperatures
for aggregates grown under a magnetic field. K=0 corresponds to
the DLA-like structure. The line is a guide to the eyes.

FIG. 8. Chirality calculated for different temperatures for aggre-
gates grown under a magnetic field. The base line �arrow� corre-
sponds to the chirality for an aggregate grown without a field. The
line is a guide to the eyes.

GROWTH OF FRACTAL ELECTRODEPOSITED¼ PHYSICAL REVIEW E 73, 041403 �2006�

041403-5



arrow in the graphics is a base line that corresponds to the
chirality of an aggregate grown without a field. It is interest-
ing to notice that although the chirality decreases continu-
ously and vanishes for a certain K value, it does not mean
that a phase transition occurs in the strict thermodynamical
sense. K does not vary continuously, each point in the graph-
ics corresponding to a different growth event.

The chirality calculation is very sensitive to the details of
the short-range scale on the aggregate structure; thus grow-
ing structures repeated times with the same parameter pro-
vide some dispersion on the � value. Since the growth of
such structures is relatively very time consuming, we did not
obtain the error bars.

The main effect of the thermal energy is to increase the
degree randomness of the particle movement, which pro-
vides a loss of bias in the circular direction induced by the
Lorentz force.

D. Final remarks

The influence of electric and magnetic fields and the tem-
perature on the growth of electrodeposited aggregates de-
scribed above can be considered perturbations to the stan-
dard DLA model. They are agents that provide a bias on the
random particle movement. The fractal character of the
simulated aggregates is not destroyed, and indeed they repro-
duce the forms obtained in electrodeposition experiments.
This accordance is obtained in spite of the simplicity of the
model; notice that we did not consider realistic physico-
chemical mechanisms of electrodeposition processes.

IV. CONCLUSION

In this paper we have simulated the two-dimensional
growth of structures in electrodeposition experiments under

the action of electric and magnetic forces and the thermal
energy. Based on the standard DLA model we introduced
different probabilities on the random walk step. The prob-
abilities are weighted by the Boltzmann term, and the step
direction is chosen by the Monte Carlo method. It provides a
bias on the particle movement until the particle sticks in the
aggregate.

The effect of the electric field on the growth is to compact
the aggregates, increasing the fractal dimension from 1.70 to
1.82. This evolution saturates after the application of a few
volts. The effect of screening is attenuated, and inner
branches also grow due to the bias to the center on the par-
ticle movement. We considered the entire aggregate contrib-
uting to the electric field acting on a traveling particle. Be-
sides introducing a dependence on the history of growth, it
modifies the aggregate form. The magnetic field tends to
produce a spiral form on the aggregates, and they twist to
opposite directions according to the field direction. A quan-
tity, stated as the chirality, was defined to measure how
twisted the aggregates are.

Increasing the temperature the thermal energy introduces
noise to the particle walk, diminishing or vanishing the bias
introduced by the forces. For structures grown under electric
and magnetic fields the introduction of noise due to thermal
activation of the structures is accompanied by a decrease of
the fractal dimension and chirality. The structures obtained in
our simulations are in good agreement with experimental
results.
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